A-AO#S 450 CARPIGIE-NELLON UNIV PITTSBURGH PA DEPT OF COMPUTER R ==ETC F/0 ’I! ‘
NONDETERMINISM AND THE CORRECTNESS OF PARALLEL PROGRAMS , (V)
MAY 77 L FLON: N SUZUXI Ftlb!b-?}-C-ﬂO?t
UNCLASSIFIED AFOSR=TR=T77=113

END
DATE
FILMED
.. -77




<

\

—————

S
]

A3 No

‘

AFOSRTR- 77-1137 e iR @

Nondeterminism and the Correctness of Parallel Programs

<=
"

Lawrence Flon! and Norihisa Suzuki

May 1977

ADAG43450

Carnegie-Mellon University

Pittsburgh, Pennsylvania

Approved fop

public
distribution uny release ;

unlimiteq,

DEPARTMENT
of

COMPUTER SCIENCE

Carnegie-Mellon University

DBC FLE COPY




AIR FORCE OFFICE OF SCIENTIFIC RESEARCH (AFSC)
NOTICE OF TRANSMITTAL TO DDC

This technical report has been reviewed and is
approved for public release IAW AFR 190-12 (7b).
Distribution is uslimited.

A. D. BLOSE

Technical Information Officer




SECURITY C FICATION or vms F’AGE (Wmm n.«. Enlnlml)

by
EPORT DOCUMENTAT Ot FAGE: AR T et e
/’}'r | '._REPQ |2 GOVT ACCESSION NO.[ 3. RECIPIENT'S CATALOG NUMEFR
VY AFOSR'I'R 77-1 137(

4 TITLE (and Subtitle) ,5' TYPE OF REPORT & PERIOD COVERED

PARALLEL PROGRAMS

[ _avvnonter

B ‘I;a;renceflon and Norlhlsa Zuzuk"(/

9. PERFORMING ORGANIZATION NAME AND ADDRESS g . f
5 ; ; AREA & WORK UNIT NUMBERS
Carnegie-Mellon University
Computer Science Dept.”

W 61102 F -
23?//\2 { 7 /
Pittsburgh, PA 15213

11. CONTROLLING OFFICE NAME AND ADDRESS QW

_NONDETERMINISM AND THE CORRECTNESS OF (

S

Defense Advanced Research Projects Agency /// May @77
1400 Wilson Blvd

Arlington, VA 22209 1 21
T4 MONITORING AGENCY NAME & ADDRESS(I! dilferent from Controlling Office) | 15. SECURITY CLASS. (of thie report)

ES

Air Force of Scientific Research (NM)
Bolling AFB, DC 20332 (f;;z UNCLASSIFIED

/ 1Sa, DECLASSlEHCATION/DOWNGRAD!NG

SCHEDUL

6. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse eide Il necessary and identily by block number)

20. ABSTRACT (Continue on reverse alde If necessary and identify by block number) We present )weakes t pre-

conditions which describe weak correctness, blocking, deadlock, and starvation
for nondeterministic programs, A procedure for converting parallel programs

to nondeterministic programs is described, and the correctness of various ex-
ample parallel programs is treated in this manner. Among these are a busy-wait
mutual exclusion scheme, and the problem fo the Five Dining Philosophers.

DD | 5n'5s 1473  eoition oF 1 Nov 68 1s omsoLETE
/N 0102-014- 6601 |

v0 3 094

SECURITY CLASSIFICATION OF THIS PAGE (When Dete




'

NTIS White Sé
one Butt

A

To be presented at the IFIP Working Conference on the Formal Description of

e ——— o)

Section [

BISTRIBITION/AVAILABILITY CODES

Section ﬁ//

1 SPLCIAL

|

|

. Nondeterminism and the Correctness of Parallel Programs

Lawrence Flonl and Norihisa Suzuki

May 1977

Carnegie-Mellon University

Pittsburgh, Pennsylvania

Abstract: We present weakest pre-conditions which describe weak
correctness, blocking, deadlock, and starvation for nondeterministic
programs. A procedure for converting parallel programs to
nondeterministic programs is described, and the correctness of
various example parallel programs is treated in this manner. Among
these are a busy-wait mutual exclusion scheme, and the problem of
the Five Dining Philosophers.

Programming Concepts, St. Andrews, New Brunswick, Canada, Aug. 1-5.

This work was supported in part by the Defense Advanced Research Projects Agency
under contract no. F44620-73-C-0074, and in part by the National Science Foundation
under grant DCR74-24573, and monitored by the Air Force Office of Scientific

Research.

1 Author’s address 8/77: Department of Com
Austin, Austin, Texas 78712.

puter Sciences, The University of Texas at




'é

|

! — c—

1. Introduction

Some of the most difficult to find bugs in systems programs arise in situations of
concurrent access to data structures. Thus the need for a precise understanding of
the semantics of parallel programs is clear. The attainment of a suitable formal
definition of parallel program semantics will allow construction of automatic verification
tools. These should help to eliminate the frustrating, “irreproducible” Bugs which
usually plague an operating system.

The earliest attempts at verifying parallel programs, e.g. [Habermann 72,
Brinch Hansen 72] were basically informal and concerned primarily with weak
correctness. [Flon 76] describes a semi-formal approach to verifying concurrently
accessed abstract data types which contain path expressions. Hoa_re [Hoare 74)
gave a formal axiomatization for monitors. These latter two papers take a data-
oriented view of parallelism which, though quite reasonable for the problems treated,
is not particularly suited for proof of such strong correctness properties as safety
from blocking and deadlock. By data-oriented we mean with regard only to concurrent
access to data structures, independent of the control structures of the actual
processes.

The approach of Owicki and Gries [Owicki 76] is a process-oriented extension
of Hoare’s axiom system for sequential programs [Hoare 69] - close attention is paid
to the form of the actual processes. Our goals are closely related to those of Owicki
and Gries, although our approach is quite different. There have seen similar
approaches, notably [Keller 76, Lamsveerde 76]. The work presented here is an

outgrowth of some ideas discussed in [Flon 77].




We shall begin by using Dijkstra’s predicate transformeres, primarily the concept
of weakest pre-condition, to describe the semantics of nondeterministic programs
which differ from Dijkstra’s [Dijkstra 76] in that they are not necessarily required to
terminate. In particular we will discuss the weak correctness of such nondeterministic
programs, along with the strong correctness issues of blocking, deadlock, and
starvation.

Subsequently we discuss the relationship between nonaeterminism and
parallelism. We show how parallel programs can be effectively transformed into
nondeterministic programs, so that the results obtained for nondeterministic programs
can be indirectly used to verify parallel programs. Several examples are treated,
including the problem of the Five Dining Philosophers, which relies on a
synchronization primitive, and an old Mutual Exclusion scheme which relies only on the

indivisibility of access to memory.

2. The Nondeterministic Command Rep

Dijkstra [Dijkstra 76] describes the semantics of the repetitive guarded
command, written

do B;~S; || B=S; |l . . .B,=S, od

in terms of the weakest (i.e. necessary and sufficient) pre-condition to the command
which guarantees termination with a given post-condition. The intent of DO is that the
guards Bj are evaluated, a true one is chosen (nondeterministically), and its
corresponding statement Sj is executed. The process is continued until no Sj is true,

at which point DO terminates. Formally,




wp(DO, R) = (3k20)H,(R)

Ho(R) =R A ~(3j€1..n)8j

Hk+1(R) = (3j€1..n)8j A (Vjel..n)(Bj - wp(Sj, H(R)))
where H (R) gives the weakest pre-condition which assures that R will be established
and the loop will terminate in at most k steps. We define for our purposes a similar
command, REP, denoted

rep By=S, || B=S3 || . . .B,~S, per

REP has similar behavior to DO, with the exception that REP will not terminate unless
the command "exit" is executed. Thus, if no guard evaluates to true, REP will "hang" -
i.e. it will not terminate. If there is in general no final state, how are we to défine the

semantics of REP?

3. Weak Correctness

3.1 Invariance

One way to represent the weak correctness of REP is in terms of a set of
assertions {Pj | 1sjsn}, where n is the number of guards and Pj is guaranteed to hold
whenever Sj is executable. That is, a selection is about to be made from among the
guards and Bj is true. If we denote the fact that P must always hold whenever Bj
evaluates to true as wlpi(REP, P), we have

wip;(REP, P) = (szO)Wf‘(P)
j - B,
Wi(P) - B;=P

Wi | (P) = (YieL.nXB; = wip(s;, W, (P))




W'j‘(P) is the weakest condition which guarantees BjnoP after exactly k statements have
been executed, if it is possible to execute that many. The predicate wip(S, R) is
Dijkstra’s weakest liberal pre-condition, and is equivalent to wp without requiring
termination.

As an example, consider

rep
1=0 - xex/2; if odd(x) then l«1 else skip fi ||
I=1 - xex-1

per

Let P; be even(x) and P, be odd(x). Then by the above recurrence,
wip(REP, even(x)) = (I=0 = even(x))

wip>(REP,0dd(x)) = (I=1 = odd(x))

3.2 Potentiality
Let us also consider the question of whether or not a given guard can ever (has
the potential to) evaluate to true. That is, what is the weakest pre-condition to REP
that guarantees the existence of a finite execution sequence which leads to the truth
of Bj? Let
wpot(REP, P) = (3k20)V (P)
Vo(P) = P
Vik+1(P) = (3j€l..n)(8j A WP(Sj, V(P))
Then wpot(REP, Bj) is the desired weakest pre-condition. In the above recurrence,
Vi(P) gives the weakest pre-condition that guarantees the existence of a length-k
execution sequence which establishes P.
For example, if REP is

rep A + x«0 || B » xe1 || x=1 » xex+1 per




then guard 3 (x=1) has the potential to become true iff wpot(REP, x=1), which

evaluates to (x=1 v B), is true at entry.

4. Strong Correctness

4.1 Blocking
Neither wlpj nor wpot is sufficient to guarantee that REP will do anything useful.
For- example, it may be that eventually no guards will be true and the command will
"hang”. We shall say that REP is blocked if such a state is reached, and is blocking-free
such state can possibly be reached. The weakest pre-condition that guarantees
il REP is blocking-free is
wbp(REP) = (Yk20)Gy
Go = true
Giep ™ (3j€1..n)8j A (Vj(l..n)(Bj = wp(Sj, Gy)
Here, Gy is the weakest pre-condition that guarantees at least a length-k execution
sequence. For example, if REP is
rep x>y = xex-y || y>x » y«y-x per
then by the above recurrence

wbp(REP) = x#y A (x<0 v y<0)

4.2 Deadlock

Deadlock in a system of parallel processes is defined in [Holt 72] as a state in
which "one or more processes are blocked forever because of requirements that can
never be satisfied." We will call a nondeterministic program deadlocked if it reaches a

state from which, for any guard, there is no possible execution sequence which will




lead to its truth. A deadlock-free program is one in which it is not possible to reach a
deadlock state.

Consider the predicate wpot(REP, Bj) for some REP command. That predicate °
gives the weakest pre-condition that guarantees the existence of an execution
sequence which leads to the truth of guard j. Suppose wpot(REP, Bj) is always true
whenever a guard selection is made, and that REP is blocking-free. Then REP can
never reach a deadlock siate with respect to guard j, since B)- always has the potential
to evaluate to true. This condition, denoted wdpj(REP) is precisely defined by

wdpj(REP) = wbp(REP) A (Vkeél..n)wip, (REP, wpot(REP, Bj))

4.3 Starvation
The phenomenon of starvation in a system of parallel processes is another
strong correctness issue that we must consider in addition to blocking and deadlock.
Dijkstra [Dijkstra 71] briefly discusses this issue with respect to the problem of the
Five Dining Philosophers. In a nondeterministic program, we say that a particular
statement may starve if it is p.ossible for the program to reach a state in which the
statement’s guard is false, and state transitions which leave it false may continue to be
taken indefinitely. Thus a given guard j is starvation-free if it is not possible to reach
a state from which there is an execution sequence which forever maintains ~Bj. Let
this condition be denoted wspj(REP). Then
wspj(REP) = wbp(REP) A ~wpot(REP, U(~Bj))
U(R) = (Yk20) Uy (R)
Uo(R) =R
Uk+1(R) -.(.3i61..n)(8i A wp(S;, U (R))

Uk(R) gives the weakest pre-condition which assures the existence of a length-k




execution sequence during which R is always true. U(R) requires that there be an
unbounded execution sequence which maintains the truth of R. Thus wspj(REP) gives
the weakest pre-condition which denies the possibility of reaching a state in which

U(«Bj) holds.

4.4 Invariants

It is not always necessary to compute all of the stated recurrences in the
previous sections in order to verify a given program. The following theorems follow
from the previously defined recurrences:
Theorem 1
[(Ykel.nXJ A By = wip(Sy, NI A (S = (Bj = P))

P S wlpj(REP, P)

That is, aﬁy predicate J which is invariant across each statement and implies (B;=P)

l
will suffice to guarantee wlpj(REP, P).

Theorem 2
[((Vkel.nXJ A B, = wp(Sy, N A (S = (3k€1..n)By)
F J = wbp(REP)
Similarly, an invariant predicate which implies the existence of a true guard must be

sufficient to guarantee absence of blocking.

Theorem 3
[(Vkel.nXJ A By = wp(Sy, N A (S = (3k€1..n)By) A (J = wpot(REP, Bj))
F 4> wdpj(REP)
Any invariant predicate which implies both safety from blocking and the potential for

Bj to be established must guarantee guard j to be safe from deadlock.




Theorem 4
[(Ykel.n)(J A By = wp(Sy, S)] A (J = (3kel.n)By) A (S = ~U(-B,-))
F U= wspj(REP)
If an invariant predicate implies that no unbounded execution sequence exists which

keeps Bj false, then guard j must be free from starvation.

45 Example

Consider the command

rep
x>0 A y<n = xex-1; yey+l ||
y>0 A 2<n 2 yey-1; ze2+1 ||
2>0 A w<n - ze2z-1; wew+l ||
w>0 A x<n 2 wew-1; xex+1
per

Let J be
0<xsn A 0<y<n A 0<z<n A 0<wsn A O<x+y+z+w<4n
We will show that if ¢ is true at entry, the command is safe from blocking. By
Theorem 2, 4 = wbp(REP) because
1) J A By = wp(Sy, J)

O<x<n A 0<y<n A 0<z<n A 0<w<n
= 1<xsn+l A -1<ysn-1 A 0<z<n A 0sw<n A O<x+y+z+w<4n

(the others follow by symmetry)
2) J = (ke l..n)Bk
Os<x<n A 0<y<n A 0<zsn A 0Sws<n A O<x+y+z+w<4n
= (X>0 A y<n) v (y>0 A z<n) v (z>0 A w<n) v (Ww>0 A x<n)
5. Reduction of parallel programs to nondeterministic programs

We have seen that such problems as weak correctness, blocking, deadlock, and




starvation can be formalized for nondeterministic programs. These results can be
applied to parallel programs if we can effectively convert parallel programs to
equivalent nondeterministic programs. Here the meaning of equivalence is that for any
execution sequence of one program, there is a corresponding execution sequence of
the other such that values of variables in the parallel program have the same history
sequence. (Note that we will have to introduce program counters to transform
parallelism to nondeterminism, so they are only equivalent in this sense.) For a
rigorous treatment of models of parallel computation see [Karp 69].

We will outline a procedure for transforming parallel programs made up of the

cobegin-coend construct with conditional critical regions for synchronization

[Brinch Hansen 73]. The sequential parts of these programs consist of assignment,
conditionals, while-loops; compounds, and sequencing. We will.use the notion of
effective indivisibility of program segments. A segment is effectively indivisible if the
final values of variables are always determined only by their initial values. That is,
they are not affected by the other processes. For example, in the program
cobegin xex+1 // xex+]1 coend
xex+1 is not indivisible because the final value of x may be either 1 or 2 more than
the initial value‘. If we convert the program to
cobegin cex; xec+l // dex; x«d+1 coend
then each assignment is indivisible. The conditional critical region itself is by definition

ef(ect'iveiy indivisible, so the program

cobegin
with x when true do xex+1 //
with x when true do xex+1
coend

is in indivisible form.




10

We first convert the entire parallel program to indivisible form - that is, a
program in which every assignment statement which is outside of a conditional critical
region is indivisible. This is accomplished by introducing variables local to each

process as in the previous example. Next, each statement is converted as follows:

1) cobegin Py //...// P, coend
The program skeleton is converted to

P1¢ .. .Pre0;

rep .
<guarded commands for P> (|
<guarded commands for P> ||
C1=mj A...c,=m, - exit

per

Here, <guarded commands for P,> consists of a number of guarded commands of the

form
<condition> - <statement list>
and m; is the largest value of c; assigned in <guarded commands for P>. The "exit"

command is introduced to provide a means for termination.

2) Sequencing of the form S15...8,
Statement lists are converted to

<guarded command> ||

<guarded command> ||

3) Assignment of the form x«e

If the program counter for the previous statement is n, this is transformed to




pj-ml - X&e; pjo-n+2

4) Conditionals of the form if B then S; else S, fi

ihe previous statement, the conditional is transformed to

p_j-n+l AB- pjc-n+2 ]

pj-nfl A -B - pj«n+k1+2 ]

pj-n+2 S
<guarded commands for §;>

pj-n+] "’kl e

pj-n+2+k1 e

<guarded commands for S,>

pj-n+l*k1+k2 O

5) Loops of the form while B do S od

from converting S. If n is the previous program counter,

pj-n+l AB- ij—n+2 ]
pj-nfl A-B= p‘.o-n+2+k
p,--n+2 b @

<guarded commands for S>

pi-n+l+k W

11

Let k; be the number of different values of the program counter resulting from

the transformation of Sl. and ko be the same for S?_. If n is the program counter for

Let k be the number of different values of the program counter which result




S IR

12

6. Application

Even though by conversion to nondeterminism we have obtained formal
definitions for the various correctness issues associated with parallel programs, the
question remains as to whether this approach is practical. In this section we shall
treat various examples to show the power of our method. The approach of Owicki
[Owicki 75] is both practical and highly dissimilar to ours, so by way of comparison

some of the examples we discuss have been previously handled by her method.

6.1 Weak correctnelss
The following example appears in [Owic‘\i 75), where its weak correctness
cannot be proved without the addition of auxiliary variables. The discovery of the
right set of auxiliary variables (in general) requires much intellectual effort.
cobegin
with x when true do xex+1 //

X
with x when true do xex+1
coend

The transformation to a nondeterministic program also introduces auxiliary variables
(program counters), but in a uniform manner. Even though some of the program
counters may be superfluous, we remove the burden of inventing auxiliary variables

and the corresponding operations upon them. The nondeterministic version is

P1+P2+0;
rep
p1=0 = xex+liprel ||
p2=0 - xex+1; poel ||
pl-l A 92-1 - exit
per

It is easily seen that the weak correctness invariant is x=xg+p)+pp, Where xqg is the

initial value of x. Since py=1 A p=1 at the exit, the program will establish x=xqg+2.




13

6.2 Mutual exclusion
We consider a solution to a mutual exclusion problem discussed by Dijkstra in
1965 [Dijkstra 65] Two processes A and B have critical sections which must be

excluded from one another. No synchronization primitive other than the indivisibility

of a single access to memory is allowed. The following solution is discussed in

(Flon 77]:
var inA, inB: boolean initially false,
prty: (A,B) initially A;
processA: while true do processB: while true do
<think> <think>
inAetrue; inBetrue;
while inB do while inA do
if prty=8 then if prty=A then
inA«false; inBefalse;
while priy=B do skip od; while prty=A do skip od;
inAetrue inBetrue
fi fi
od; od;
<critical section> <critical section>
inA«false; inBefalse;
prty«B prty«<A
od od

The nondeterministic version of this parallel system is




14

plep2¢«1; inA«inBe«false; prty«A;
rep
pl=1 - inA«true; ple«2 ||
pl=2 A inB 2 ple3 ||
pl=3 A prty=B - inA«false; ple4 ||
pl=4 A prty=B - skip ||
pl=4 A prty#B - inA«true; ple2 ||
pl=3 A prty¥B - ple«2 ||
pl=2 A -~inB = <critical section>; pl«5 || -
pl=5 - inA«<false; ple6b ||
pl=6 = prty«B; ple«1 ||

p2=1 - inBetrue; p2¢2 ||

p2=2 A inA = p2¢3 ||

p2=3 A prty=A - inB«false; p2«4 ||

p2=4 A prty=A - skip ||

p2=4 A prty#A - inBetrue; p2¢2 ||

p2=3 A prty#A - p2«2 ||

p2=2 A -~inA - <critical section>; p2«5 ||

p2=5 - inB«false; p2«6 ||

p2=6 - prty«A; p2¢1 ||

per
To show that the critical sections cannot both be active at the same time, it
suffices to prove that the guards which reflect entry to the critical sections cannot
both be true at the same time. Thus,
(p1=2 A ~inB) A (p2=2 A =inA)
must be invariantly false. Consider the predicate
L= (pl=3 = inA) A (p2=3 = inB) A [(p1=2 = inA) v (p2=2 = inB)]
(The last conjunct is the negation of the previous formula.) L is invariant across all of
the commands, and
L = ~«(pl=2 A ~inB) v «(p2=2 A -inA)

so clearly the critical sections cannot be active simultaneously. This program is pruved

correct in [Flon 77}, using an extension of Owicki’s methodology, but auxiliary

variables are needed in a non-trivial way., The proof presented here is much simpler.



15

6.3 Deadlock

We will show that the following program is subject to deadlock:

rler2el;
cobegin
while true do
with r2 when r2=1 do r2«r2-1 od;
with rl when rl=1 dorlerl-1 od;
with r1,r2 when true do rler2e1 od
od //
while true do
with r1 when rl=1 do rlerl-1 od;
with r2 when r2=1 do r2«r2-1 od;
with r1,r2 when true do rler2e«1 od
od //
while true do skip od
coend

The nondeterministic version is

rler2el; plep2¢p3«0;

rep
pl=0 Arl=1 5 rlerl-1;plel ||
pl=1 Ar2=1 = r2er2-1;ple2 ||
pl=2 2 rler2¢];ple0 ||
p2=0 A r2=1 - r2er2-1; p2«1 |
p2=1 Arl=]1 - rlerl-1; p2¢2 ||
p2=2 3 rler2el; p2«0 ||
p3=0 - skip

per

We can establish the possibility of deadlock by finding an invariant ¢/ which implies -Bj
for some j, and then showing that there is a way to arrive at J. The latter property is
i expressed by
wpot(REP, J)
‘ For the above program

; pl=1 A r2=0 A p2=]1 Arl=0

is an invariant. It is also possible to achieve this by first executing command 1 and

then command 4. That is,



16

B; A wip(Sy, B4 A wip(Sg, 4))
which evaluates to
rl=1 Ar2=1 A pl=0 A p2=0
which is established by the initialization. Furthermore, § prevents all but the last

guard from running, so the original parallel program may deadlock.

6.4 Starvation
In this section we treat the problem of the Five Dining Philosophers
[Dijkstra 71). The following parallel program is a solution to the problem which is
known to have the pos#ibility of starvation:
fOflef2«f3f4e1;
cobegin
philosopher 1:

while true do
with f0,f1 when iU=]1 A fl=1 do fO«f1«0 od;

"eat";
with f0,f1 when true do fO«fle«1 od
od //

philosopher 5:
while true do
with 4,0 when f4=] A fO=]1 do f4«f0«0 od;

“eat";
with 4,0 when true do f4«fO«1 od

od
coend

Below is the corresponding nondeterministic program. It is evident that the program

does not terminate, so we have deleted the superfluous exit statement.




17

f0eflef213f4¢];
plep26ep3eplep5«0;
rep
pl=0 A fO=] A fl=] 3 fOfle0; plel ||
pl=1 = fO«flel; pleO ||

p2=0 A fl=1 A f2=]1 > f1f2¢0; p2¢«1 ||
p2=1 - flef2¢1; p2<0 ||

p3=0 A f2=]1 A {3=] -+ f2«f3«0; p3¢1 ||
p3=1 = f2«f3«1; p3«0 ||

pa4=0 A f3=]1 A f4=] > {3«f4<0; p4¢«1 ||
pd=1 - f3«f4¢1; p4<0 ||

p5=0 A f4=] A fO=] - f4«f0<0; p5«1 ||
pS=1 = f4«f0e]; p5<0 ||
per
To prove that the program is not free from starvation, we will use the following
theorem:
wpot(REP, P) A (P = wpot(REP, B‘-)) A[P= «B‘- A (3k(l..n)(8k A wp(Sy, P)]
4 ~wspj(REP)
The theorem states that REP is subject to starvation whenever it is possible to reach a
state P, from which it is both possible to establish Bj and possible not ta.
For the Dining Philosophers program, let P be
(f4=0 A fO=0 A f1=0 A f2=0 A pS=1 A pl=0 A p2=]1) v
(fA=]1 A fO=]1 A f1=0 A f2=0 A p5=0 A p1=0 A p2=1) v
(f4=0 A fO=0 A fl=1 A f2=1 A pS=]1 A pl=0 A p2=0)
Clearly P = ~B;. Furthermore,
P = (3kel.nXBy A wp(Sy, P)
because
P =(Bg A .wp(Ss, P)) v (B4 A wp(Sg, P)) v (Bg A wp(Sgq, P)) v (Byg A wp(Sygs P)
To prove that the state P is reachable, we must show wpot(REP, P). This clearly holds

because statement 3 may be executed first, and

B3 A wp(Sg3, P) = p2=0 A p1=0 A p5=0 A ((f4=1 A fO=1) v (f4=0 A {0=0))

-




18

is implied by the initialization. Finally, we show that P = wpot(REP, By). This is
guaranteed by
P = (Bg A wp(Sg, By)) v (Byg A wp(S10, B1)) v (Bg A wp(Sg, Big A wp(So, B1)))

Thus, there is a possibility that process 1 (and by symmetry any process) may starve.

7. Practical considerations for program verification

Even though it is sometimes possible to compute the weakest pre-condition
recurrences, in general we will have to use less complex techniques if parallel program
verification is to be practical. If we can discover sufficiently strong invariants for the
nondeterministic programs, we can use the theorems of section 4.4 to verify weak
correctness, safety from blocking, and safety from deadlock rather easily.

Verification of safety from starvation can be done by showing that starting from
a given invariant, all possible execution sequences must arrive at a state satisfying the
guard in question. This may be done by proving safety from blocking and defining an
integer function of the program state which is bounded from below and which is
decreased by every statement other than the one in question. Following is an example
of a proof of starvation-freeness.

Consider the program

rep
x>0 A y<n = xex-1; yey+1 ||
y>0 A 2<n 3 yey-1; ze2z+1 ||
2>0 A x<n & z€2-1; xex+1 ||
per

For this program, a loop invariant which guarantees safety from blocking is
O<xs<n A 0<ys<n A 0szsn A O<x+y+2<3n

Since all three statements are symmetric, we need only prove absence of starvation




19

for the first one. To do that we will show that it is not possible for the second and
the third processes to execute continuously without eventually making the first guard
true. Suppose the program is in a state in which the first guard is false - i.e. x=0 v
y=n. Consider the state function W = 3y+2z+x. W is decreased by exactly 1 by both
the second and third statements. When x=n A y=0, W can no longer decrease and the

last two statements cannot execute, guaranteeing that the first statement will execute.

8. Summary

For some time we have been lacking an effective formalism for parallel program
semantics. The approach discussed in this paper was motivated by two observations -
tha! the important correctness issues for parallel programs have counterparts in
nondeterministic sequential programs, and that parallel programs can be effectively
transformed to nondeterministic ones. We have therefore presented formal definitions
for the weakest pre-conditions which guarantee weak correctness, absence of
blocking, absence of deadlock, and absence of starvation for nondeterministic
programs, along with a procedure for the conversion of parallel programs to
nondeterminism.

As a demonstration of the usefulness of our formalism we have proved various
properties of several programs, including a busy-wait mutual exclusion scheme and the
problem of the Five Dining Philosophers. It remains to be seen to what degree these
techniques will apply to actual operating system examples, although we have tried to
present various methods which reduce the burden of computation in exchange for
some intellectual creativity, such as the discovery of invariant predicates and

monotonically decreasing state functions.

e




20
References
[Brinch Hansen 72] Brinch Hansen, P.,, A Comparison of Two Synchronizing Concepts.
Acta Informatica 1,3 (1972), 190-199.

[Brinch Hansen 73] Brinch Hansen, P, Operating Systems Principles, Prentice Hall, 1973.

[Dijkstra 65] Dijkstra, E. W,, Solution of a Problem in Concurrent Programming Control.
Comm. ACM 8,9 (Sept. 1965), 569.

[Dijkstra 71] Dijkstra, E. W,, Hierarchical Ordering of Sequential Processes. In Operating
Systems Techniques, Hoare and Perrot (eds.), Academic Press, London, 1971.

[Dijkstra 76] Dijkstra, E. W., A Discipline of Programming, Prentice Hall, 1976.

[Flon 76]Flon, L. and Habermann, A. N, Towards the Construction of Verifiable
Software Systems. Proceedings of the ACM Conference on Data: Abstraction,
Definition and Structure, SIGPLAN Notices 8,2 (March 1976), 141-148.

[Flon 77] Flon, L., On the Design and Verification of Operating Systems. Ph.D thesis,
Department of Computer Science, Carnegie-Mellon University, Pittsburgh, Pa.

(May 1977).

[Habermann 72] Habermann, A. N,, Synchronization of Communicating Processes. Comm.
ACM 15,3 (March 1972), 171-176.

[Hoare 69] Hoare, C. A. R, An Axiomatic Basis for Computer Programming. Comm. ACM
12,10 (Oct. 1969), 576-580.

[Hoare 74] Hoare, C. A. R,, Monitors: An Operating System Structuring Concept. Comm.
ACM 17,10 (Oct. 1974), 549-557.

[Holt 72] Holt, R. C, Some Deadlock Properties of Computer Systems. Computing
Surveys 4,3 (Sept. 1972), 179-196.

[Karp 69] Karp, R. M. and Miller, R. E,, Parallel Program Schemata. Journal of Computer
and System Science 3 (1969), 147-195.

[Keller 76] Keller, R. M., Formal Verification of Parallel Programs. Comm. ACM 19,7 (July
1976), 371-384.

[Lamsveerde 76] van Lamsveerde, A. and Sintzoff, M., Formal Derivation of Strongly
Correct Parallel Programs. MBLE Research Report, Brussels, Belgium (1976).

[Owicki 75] Owicki, S., Axiomatic Proof Techniques for Parallel Programs. Ph.D. Thesis,
Department of Computer Science, Cornell University (July 1975).

[Owicki 76] Owicki, S. and Gries, D., Verifying Properties of Parallel Programs: An
Axiomatic Approach. Comm. ACM 19,5 (May 1976), 279-285.




